Structures and properties of molybdenum carbonyl complexes containing uninegative nitrogen-tripod ligands derived from heterocyclic compounds including 1-H-pyrazole and $1-\mathrm{H}-1,2,4$-triazole

Kom-Bei Shiu and Jean Y. Lee
Department of Chemistry, National Cheng Kung University, Tainan 70101 (Taiwan)

Yu Wang and Ming-Chu Cheng

Department of Chemistry, National Taiwan University, Taipei 10764 (Taiwan)
Sue-Lein Wang and Fen-Ling Liao
Department of Chemistry, National Tsing Hua University, Hsinchu 10764 (Taiwan)
(Received October 31, 1992; in revised form December 11, 1992)

Abstract

The melt reaction between $1-\mathrm{H}-1,2,4$-triazole (HTz) and NaBPh_{4} affords $\mathrm{Na}\left(\mathrm{PhBTz}_{7}\right)$ while a similar process between HTz and KBH_{4} gives $\mathrm{K}\left(\mathrm{HBTz}_{3}\right)$. The uninegative L anion $\left(\mathrm{L}=\mathrm{PhBT}_{3}\right.$ or HBTz_{3}) reacts with $\left[\mathrm{Mo}(\mathrm{CO})_{6} \text {] to give [} \mathrm{MoL}(\mathrm{CO})_{3}\right]^{-}$. Upon addition of electrophiles, $\left[\mathrm{MoL}(\mathrm{CO})_{2}\left(\eta^{3}\right.\right.$-allyl)], $\left[\mathrm{MoL}(\mathrm{CO})_{2}(\mathrm{NO})\right],\left[\mathrm{MoL}(\mathrm{CO})_{3} \mathrm{Br}\right]$, and $\left[\mathrm{MoL}(\mathrm{CO})_{3} \mathrm{I}\right]$ are obtained. Two structures $c=19.388(5) \AA, Z=8, R=0.043, R_{\mathrm{w}}=0.031$ based on 2591 reflections with $I>3.0 \sigma(I) ;\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Mo}(\mathrm{HBTz})(\mathrm{CO})_{3}\right]$, orthorhombic, Pbca, $a=17.815(3), b=32.017(2), c=15.331(3) \AA, Z=8, R=0.044, R_{w}=0.061$ based on 5743 reflections with $I>2 . U \sigma(I)$. Although comparison of the averaged $\nu(\mathrm{CO})$ values reveals the increasing order of the electron donativity as $\mathrm{HBBz}_{3}{ }^{-}<\mathrm{HBTz}_{3}{ }^{-}, \mathrm{PhBTz}_{3}{ }^{-}<\mathrm{HBPz}_{3}{ }^{-}<\mathrm{HBPz}_{3}^{\prime-}, \mathrm{HBPz}_{3}^{*-}<\mathrm{HBPz}_{3}^{\prime \prime-}$, neither structural features nor reactivities show an appreciable substituent effect (i.e., $\mathrm{HBTz}_{3}{ }^{-}$vs. $\mathrm{HBPz}_{3}{ }^{-}$and $\mathrm{HBTz}_{3}{ }^{-}$us. $\mathrm{PhBTz}_{3}{ }^{-}$). Neither is the 5 -methyl-group effect for nickel pseudohalides suggested by Trofimenko et al. supported strongly by the solid-state structures of $\left[\mathrm{MoL}^{\prime}(\mathrm{CO})_{3}\right]^{-}\left(\mathrm{L}^{\prime}=\mathrm{HBPz}_{3}{ }^{-}\right.$, $\mathrm{HBPz}_{3}^{\prime-}$, or $\mathrm{HBPz}_{3}^{\star--} ; \mathrm{Pz}^{\prime}=3$,5-dimethylpyrazol-1-yl; $\mathrm{Pz}^{\star}=3$-methylpyrazol-1-yl).

1. Introduction

Poly(pyrazolyl)borates have heen used extensively as multidentate ligands in the syntheses of numerous organometallic and coordination compounds, since they were introduced in the 1960s [1]. There has been renewed interest arising from novel reactions such as activation of small molecules like H_{2} [2], O_{2} [3] or N_{2} [4], induced by metal complexes without any carbonyl ligation, and of $\mathrm{C}-\mathrm{H}$ bonds observed for quite a few metal carbonyl derivatives containing the tripodal tris(pyrazolyl)borates [5]. We and others have prepared similar ligands and collected structural and spectral

[^0]data [6] as well as carrying out orbital analysis [7] and determining relative formation rates [8] of the car-bonyl-containing complexes of all these tridentate ligands. The aim has been to get a clear picture of the electronic or steric factors determining the observed reactivity. The recent report by Trofimenko et al. [9] on the importance of the methyl group on the pyrazolyl ring-5 position of tris(pyrazolyl)borates in nickel pseudohalides therefore prompted us to determine the crystal structures of a known compound, $\left[\mathrm{Et}_{4} \mathrm{~N}\right][\mathrm{Mo}-$ $\left.\left(\mathrm{HBPz}_{3}\right)(\mathrm{CO})_{3}\right][7 \mathrm{a}]$, and a new analogue, $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]$ $\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]$, and to study related reactions of this complex and another analogue, $\left[\mathrm{NEt}_{4}\right][\mathrm{Mo}(\mathrm{Ph}-$ $\left.\left.\mathrm{BTz}_{3}\right)(\mathrm{CO})_{3}\right]$, to understand if such an effect of 5-methyl-group is also present in metal carbonyl deriva-
tives containing the ligands, where P_{z} is pyrazol-1-yl and Tz is 1,2,4-triazol-1-yl.

2. Experimental section

All operations were performed by the usual Schlenk techniques [10], using dcoxygened, dry solvents and gases. IR spectra, calibrated with polystyrene, were recorded on a Hitachi Model 270-30 instrument. Abbreviations are vs, very strong; s, strong; m, medium; w, weak; and sh, shoulder. NMR spectra were obtained on Bruker WP-100 (${ }^{1} \mathrm{H}, 100 \mathrm{MHz}$) or Varian VXR- 300 (${ }^{1} \mathrm{H}, 300 \mathrm{MHz}$) FT-NMR spectrometers. Chemical shifts (δ in ppm, J in Herz) are defined as positive downfield or negative upfield relative to internal SiMe 4 (TMS) standard. Abbreviations are s, singlet; d, doublet; br, unresolved multiplet or two overlapped singlets; tt, triplet of triplet; q, quartet. Elemental analyses were by the Microanalytical Service of the Department of Chemistry, National Cheng Kung University. $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Mo}\left(\mathrm{HBPZ}_{3}\right)(\mathrm{CO})_{3}\right]$ was prepared by the established procedure [7a].

2.1. Preparation of KHBTz;

A mixture of 1-H-1,2,4-triazole (HTz, 29.29 g, 424 $\mathrm{mmol})$ and $\mathrm{KBH}_{4}(5.72 \mathrm{~g}, 106 \mathrm{mmol})$ was heated slowly to $200^{\circ} \mathrm{C}$ until 7.8 (318 mmol) of H_{2} had evolved (wet test meter). The melt was poured into 100 ml of stirred tetrahydrofuran (THF) and the mixture cooled to room temperature. The white precipitate was collected and reerystallized from $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O}$ to give the product (14.87 g. 55%). Anal. Found: C, 28.12: H. 2.87 ; N, 49.31. $\mathrm{C}_{6} 1 \mathrm{H}_{7} \mathrm{BKN}_{9}$ calc.: $\mathrm{C}, 28.25 ; 11,2.77: \mathrm{N}, 49.42 \%$ IR (KBr): $\nu(\mathrm{BH}), 2484 \mathrm{w} \mathrm{cm}{ }^{\prime}$. ${ }^{1} \mathrm{H}$ NMR $25^{\circ} \mathrm{C}$. dimethylsulfoxide- $d_{0}, 100 \mathrm{MHz}$): protons at ring -3 and -5 positions, $\delta 8.13(3 \mathrm{H}, 5), 7.83(3 \mathrm{H}, \mathrm{s})$.

2.2. Preparation of $\mathrm{NaPhBT} z_{3}$

A mixture of $\mathrm{NaBPh}_{\downarrow}(13.00 \mathrm{~g}, 38 \mathrm{mmol})$ and HTz ($51.96 \mathrm{~g}, 753 \mathrm{mmol}$) was gradually heated to $250^{\circ} \mathrm{C}$ until ca. 8.1 g (104 mmol) of benzene had distilled from the melt. The mixture was then poured into 200 ml of THF and filtered immediately. The off-white solid residue was washed twice with 200 ml of THF and once with 30 ml of MeOH . The solid was then recrystallized from $\mathrm{Me}_{2} \mathrm{SO}$ and air dried to give 10.7 g (89%) product. Anal. Found: C, 45.54; H, 3.45; N, 39.87. $\mathrm{C}_{12} \mathrm{H}_{11} \mathrm{BN}_{6} \mathrm{Na}$ calc.: $\mathrm{C}, 45.74 ; \mathrm{H}, 3.53 ; \mathrm{N}$, 40.01%. ${ }^{1} \mathrm{H}$ NMR $\left(25^{\circ} \mathrm{C}\right.$, dimethylsulfoxide- $d_{0}, 100$ MHz): protons at ring- 3 and -5 positions, $\delta 7.90(3 \mathrm{H}$. s), $7.78(3 \mathrm{H}, \mathrm{s})$; phenyl protons, $7.15(5 \mathrm{H}, \mathrm{m})$.

2.3. Preparation of $/ \mathrm{NEt}_{4} / / \mathrm{Mo}\left(\mathrm{HBT}_{3}\right)\left(\mathrm{CO}_{3} /\right.$

A mixture of $1.98 \mathrm{~g}(7.7 \mathrm{mmol})$ of KHBTz_{3} and 1.85 $\mathrm{g}(7.0 \mathrm{mmol})$ of $\left[\mathrm{Mo}(\mathrm{CO})_{\mathrm{i}}\right]$ in 50 ml of MeCN was
stirred at reflux for 3.5 h to give a yellow solution. A de-aerated solution of 2.1 g of $\mathrm{Et}_{4} \mathrm{NBr}$ in 150 ml of $\mathrm{H}_{2} \mathrm{O}$ was then added to the solution to give the crystalline solid. The pate yellow solid was collected and washed twice with 20 ml of $\mathrm{H}_{2} \mathrm{O}$ and three times with 10 ml of E, O and dried under vacuum; yield 3.06 g (83%) Anal. Found: C, 38.63: H. 5.21; N. 26.41. $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{BMON}_{14} \mathrm{O}_{3}$ calc.: $\mathrm{C}, 38.80: \mathrm{H}, 5.17 ; \mathrm{N} .26 .62 \%$. IR $(\mathrm{KBr}): \nu(\mathrm{BH}), 2523 \mathrm{w}, v(\mathrm{CO}), 1902 \mathrm{~s}, 1774 \mathrm{vs}$ and IR (MeCN): $v(C O), 1906 s .1776 \mathrm{vs} \mathrm{cm}^{-1} \mathrm{H} \operatorname{NMR}\left(25^{\circ} \mathrm{C}\right.$ acetone- d_{0}. 100 MHz : protons at ring- 3 and -5 positions, $\delta 8.38\left(3 \mathrm{H}_{8}, 5\right), 8.13(3 \mathrm{H}, \mathrm{s}) ; \mathrm{CH}_{2}$ of $\mathrm{NE}_{4}, 3.47$ $(8 \mathrm{H}, \mathrm{q}, J(\mathrm{H} . \mathrm{H})=7.2) ; \mathrm{CH}_{3}$ of $\mathrm{NEt}_{4}, 1.36(12 \mathrm{H}, \mathrm{tt}$, $f(\mathrm{~N}, \mathrm{H})=1.9 . J(\mathrm{H}, \mathrm{H})=7.2)$. A metathesis reaction between bistriphenylphosphine)iminium chloride ([N(P$\mathrm{Ph}_{3}, \frac{\mathrm{Cl}}{}$) and $\mathrm{K}\left[\mathrm{Mo}\left(\mathrm{HBT}_{2}\right)(\mathrm{CO})_{3}\right]$ in MeOH was also found to give [N(PPh $\left.)_{2}\right]\left[\mathrm{Mo}(1 / B T z,)(\mathrm{CO})_{3}\right]$.

2.4. Preparation of $/ \mathrm{NEF}_{f} / / \mathrm{Mo}\left(\mathrm{PhBT} \mathrm{z}_{i}\right)(\mathrm{CO})_{i} /$

This yellow compound was obtained from NaPh$\left.\mathrm{BT}_{3},[\mathrm{MorCO})_{6}\right]$, and excess $\mathrm{Et}_{4} \mathrm{NBr}$ by an analogous procedure; yield 80\%. Anal. Found: C, 46.21 : H, 5.46 ; $\mathrm{N}, 23.49 . \mathrm{C}_{23} \mathrm{H}_{31} \mathrm{BMON}_{11} \mathrm{O}_{3}$ calc.: $\mathrm{C}, 45.86 ; \mathrm{H}, 5.20: \mathrm{N}$, 23.25%. IR (KBr): wCO), 1004s, 1770ks and IR (MeCN): $u(\mathrm{CO})$. 1000s, 177tus cm ' ${ }^{\prime} \mathrm{H}$ NMR ($25^{\circ} \mathrm{C}$. $\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$: protons at ring- 3 and -5 positions, δ $8.29(3 \mathrm{H}, \mathrm{s}) .8 .09(3 \mathrm{H}, \mathrm{s})$: Ph. $7.86(2 \mathrm{H}, \mathrm{m}) .7 .56(3 \mathrm{H}$, $\mathrm{m}) ; \mathrm{CH}_{2}$ of $\mathrm{NEt}_{4}, 3.33(8 \mathrm{H}, \mathrm{q}, J(\mathrm{H}, \mathrm{H})=7.3) ;\left(\mathrm{CH}_{3}\right.$ of $\mathrm{NEt}_{4}, \overline{1} .38(12 \mathrm{H}, \mathrm{1}, J(\mathrm{~N}, \mathrm{H})=1.9 . J(\mathrm{H}, \mathrm{H})=7.3)$.
3.5. Preparation of $/$ MoL $(C O), N O) /(L=H B T=$, PhBTz:

To a stirred solution of 3.0 mmol of $\left.\mathrm{M}[\mathrm{MoL(CO})_{3}\right]$ ($\mathrm{M}=\mathrm{Na}$ or K) prepared in situ in 30 ml of MeCN , $[\mathrm{NO}]\left[\mathrm{BF}_{4}\right](0.38 \mathrm{~g} .3 .3 \mathrm{mmol})$ was added in portions. Gas evolved briskly and when this stopped the solvent was removed under vacuum. Recrystallization from $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}$ gave the orange vellow product [$\mathrm{Mo}(\mathrm{HB}$ $\left.\mathrm{Tz}_{3}\right)(\mathrm{CO})_{2}(\mathrm{NO})$; yield $60-65 \%$. Anal. Found: C. 23.64; $\mathrm{H}, 1.93 ; \mathrm{N} .34 .37 . \mathrm{C}_{4} \mathrm{H}_{7} \mathrm{BMoN}_{11} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ calc.: C . $23.70 ; \mathrm{H}, 1.95: \mathrm{N}, 34.60 \% \mathrm{~F}$. $\mathrm{IR}(\mathrm{KBr}): \nu(\mathrm{BH}), 2544 \mathrm{w}$; ${ }^{2}(\mathrm{CO}), 2028 \mathrm{~s}, 1936 \mathrm{~s}: u(\mathrm{NO}), 1680 \mathrm{~s}$ and IR $(\mathrm{CH}, \mathrm{Cl}):$, $\nu(\mathrm{CO}), 2036 \mathrm{~s}, 1950 \mathrm{~s} ; \mathrm{NO}), 1690 \mathrm{~s} \mathrm{~cm}{ }^{-1},{ }^{1} \mathrm{H}$ NMR $\left(25^{\circ} \mathrm{C}\right.$. acetone- $\left.d_{6}, 100 \mathrm{MHz}\right)$: protons at ring-3 and -5 positions, $\delta 8.67(2 \mathrm{H}, 5), 8.63(2 \mathrm{H}, \mathrm{s}), 8.58(1 \mathrm{H}, \mathrm{s}), 8.54$ ($1 \mathrm{H}, \mathrm{s}$). $\left[\mathrm{Mo}\left(\mathrm{PhBTz}_{3}\right)(\mathrm{CO})_{2}(\mathrm{NO})\right]$, Anal. Found: C^{\prime}, 35.04; H, 2.49. N, 29.13. $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{BMON}_{11} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ calc.: C, 34.81; H, 2.50: N. 29.00\%. IR (KBr) : $1(\mathrm{CO}$), 2028 s . $1932 \mathrm{~s}, \mathrm{mO}), 1680 \mathrm{~s}$ and $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}\right): p(\mathrm{CO})$, $2036 \mathrm{~s}, 1948 \mathrm{~s} ; \mathrm{NO}), 1680 \mathrm{sm}{ }^{1}{ }^{1} \mathrm{H}$ NMR $\left(25^{\circ} \mathrm{C}\right.$, $\mathrm{CDCl}_{3}, 300 \mathrm{MHz}$: protons at ring -3 and -5 positions, δ $8.29(2 \mathrm{H}, \mathrm{s}) .8 .27(2 \mathrm{H}, \mathrm{s}) \mathrm{s} .07(1 \mathrm{H}, \mathrm{s}) .800(1 \mathrm{H}, \mathrm{s}) ; \mathrm{Ph}$. $7.82(2 \mathrm{H}, \mathrm{m}), 7.58(3 \mathrm{H}, \mathrm{m})$. $\left.\mathrm{C}^{\prime} \mathrm{H}\right) \mathrm{NMR}\left(25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}\right.$, $75 \mathrm{MHz}):(\mathrm{O}, 210$ (2 () Carbon nuclei at ring-3 and
-5 positions, 155.4 (2 C), 155.2 (1 C), 149.7 (1 C), 149.5 (2 C); Ph, 133.8 (2 C), 130.3 (1 C), 129.4 (2 C) with one unobserved signal for the ipso-carbon nucleus of Ph .
2.6. Preparation of $\left[\mathrm{MoL}(\mathrm{CO})_{3} X\right](X=\mathrm{Br}, \mathrm{I})$

A solution of 3.03 mmol of $\mathrm{M}\left[\mathrm{MoL}(\mathrm{CO})_{3}\right]$ in 20 ml of MeOH was treated dropwise with a solution containing 3.40 mmol of Br_{2} or I_{2} in 5 ml of MeOH at $-20^{\circ} \mathrm{C}$ with immediate formation of precipitate. The resulting suspension was stirred for 10 min and then filtered out. The product was washed twice with 15 ml of MeOH and dried under vacuum in $50-75 \%$ yield. $\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3} \mathrm{I}\right]$, orange-yellow. Anal. Found: C, $20.53 ; \mathrm{H}, 1.46 ; \mathrm{N}, 24.05 . \mathrm{C}_{9} \mathrm{H}_{7} \mathrm{BIMoN}_{9} \mathrm{O}_{3}$ calc.: C , 20.67 ; H, 1.35; N, 24.11\%. IR (KBr): $\nu(\mathrm{BH}), 2548 \mathrm{w}$; $\nu(\mathrm{CO}), 2044 \mathrm{~s}, 1968 \mathrm{~s}, 1934 \mathrm{~s}$ and $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO})$, $2044 \mathrm{~s}, 1974 \mathrm{~s}, 1942 \mathrm{~s} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H} \operatorname{NMR}\left(25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, 100\right.$ MHz): protons at ring-3 and -5 positions, $\delta 8.74$ $(3 \mathrm{H}, \mathrm{s}), 8.36(3 \mathrm{H}, \mathrm{s}) .\left[\mathrm{Mo}\left(\mathrm{PhBTz}_{3}\right)(\mathrm{CO})_{3} \mathrm{Br}\right]$, yellowbrown. Anal. Found: $\mathrm{C}, 32.50 ; \mathrm{H}, 2.15 ; \mathrm{N}, 22.74$. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BBrMoN}_{9} \mathrm{O}_{3}$ calc.: $\mathrm{C}, 32.64 ; \mathrm{H}, 2.01 ; \mathrm{N}, 22.84 \%$. IR (KBr): $\nu(\mathrm{CO}), 2056 \mathrm{~s}, 1996 \mathrm{~s}, 1942 \mathrm{~s}$ and IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\nu(\mathrm{CO}), 2056 \mathrm{~s}, 1984 \mathrm{~s}, 1942 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(25^{\circ} \mathrm{C}\right.$,
$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): protons at ring- 3 and -5 positions, δ $8.73(3 \mathrm{H}, \mathrm{s}), 8.62(3 \mathrm{H}, \mathrm{s}) ; \mathrm{Ph}, 7.86(2 \mathrm{H}, \mathrm{m}), 7.66(3 \mathrm{H}$, m). [$\left.\mathrm{Mo}\left(\mathrm{PhBTz}_{3}\right)(\mathrm{CO})_{3} \mathrm{I}\right]$, orange-yellow. Anal. Found: C, 30.21; H, 1.98; N, 21.15. $\mathrm{C}_{15} \mathrm{H}_{11} \mathrm{BIMoN}_{9} \mathrm{O}_{3}$ calc.: C, $30.08 ; \mathrm{H}, 1.85 ; \mathrm{N}, 21.05 \%$. IR (KBr): $\nu(\mathrm{CO}), 2036 \mathrm{~s}$, $1974 \mathrm{~s}, 1948 \mathrm{~s}$ and $\mathrm{IR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}), 2044 \mathrm{~s}, 1974 \mathrm{~s}$, 1940s cm^{-1}. ${ }^{1} \mathrm{H}$ NMR ($25^{\circ} \mathrm{C}, \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): protons at ring-3 and -5 positions, $\delta 8.37(2 \mathrm{H}, \mathrm{s}) ; \mathrm{Ph}, 7.86$ $(2 \mathrm{H}, \mathrm{m}), 7.65(3 \mathrm{H}, \mathrm{m})$.

2.7. Preparation of $\left[\mathrm{MoL}(\mathrm{CO})_{3}\left(\eta^{3}\right.\right.$-allyl $\left.)\right]$

To a suspension of 1.0 mmol of $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{MoL}(\mathrm{CO})_{3}\right]$ in 20 ml of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added 1 ml of allyl bromide. The mixture was stirred at room temperature for 3 h and a transparent solution formed. A solution IR spectrum indicated the complete reaction. The solvent and excess allyl bromide were then removed under vacuum. Recrystallization from $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}$ gave 80% of the orange-yellow solid. $\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{2}\left(\eta^{3}\right.\right.$-allyl $)$, yellow. Anal. Found: $\mathrm{C}, 31.52 ; \mathrm{H}, 3.04 ; \mathrm{N}, 29.87$. $\mathrm{C}_{11} \mathrm{H}_{12} \mathrm{BMoN}_{9} \mathrm{O}_{2} \cdot 1 / 2 \mathrm{H}_{2} \mathrm{O}$ calc.: C, $31.60 ; \mathrm{H}, 3.14$; $\mathrm{N}, 30.15 \%$. IR $(\mathrm{KBr}): \nu(\mathrm{CO}), 1954 \mathrm{~s}, 1856 \mathrm{~s}$ and IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right): \nu(\mathrm{CO}), 1960 \mathrm{~s}, 1866 \mathrm{~s} \mathrm{~cm}{ }^{-1} .{ }^{1} \mathrm{H}$ NMR $\left(25^{\circ} \mathrm{C}\right.$,

TABLE 1. Crystal data for $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Mu}\left(\mathrm{HBPz}_{3}\right)(\mathrm{CO})_{3}\right]$ and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]$

Compound	$\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Mo}\left(\mathrm{HBPz}_{3}\right)(\mathrm{CO})_{3}\right]$	$\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]$
empirical formula colour	$\mathrm{C}_{20} \mathrm{H}_{30} \mathrm{BMoN}_{7} \mathrm{O}_{3}$ yellow	$\begin{aligned} & \mathrm{C}_{45} \mathrm{H}_{37} \mathrm{BMoN}_{10} \mathrm{O}_{3} \mathrm{P}_{2} \\ & \text { yellow } \end{aligned}$
crystal size (mm)	$0.60 \times 0.40 \times 0.34$	$0.30 \times 0.40 \times 0.50$
space group	orthorhombic, Pbca (No. 61)	
unit cell dimensions $a, b, c, \stackrel{\circ}{\AA}$	15.832(3), 15.799(4), 19.388(5)	17.815(3), 32.017(2), 15.331(3)
volume, \AA^{3}	4850(2)	8745(2)
Z	8	8
$D_{\text {calc }} \mathrm{g} / \mathrm{cm}^{3}$	1.433	1.336
orientation rflns, range	$13,13^{\circ} \leq 2 \theta \leq 24^{\circ}$	$25,79^{\circ} \leq 2 \theta \leq 80^{\circ}$
data collected	$-h,-k,-l$	$+h,+k,+l$
abs cor	ψ scan	
abs coeff, mm^{-1}	0.56	3.62
abs. correction	not applied	applied
transm range	-	0.51-1.00
diffractometer used	Siemens R3m/V	Rigaku AFC-5R
radiation; λ, \AA	Mo K $\alpha, 0.7107$	$\mathrm{CuK} \alpha$, 1.5418
temperature (K)	297	298
scan type	$\theta / 2 \theta$	
2θ range, deg	3-50	2-120
scan speed, deg/min	3-15	32
std rflns	3 std/50 rflns	3 std/ 300 rflns
decay; \%	≤ 1	≤ 1
no. of unique rflns	4284	6492
no. of rflns used	2591 with $I>3.0 \sigma(I)$	5743 with $I>2.0 \sigma(I)$
$\max \Delta / \sigma$ ratio	0.001	0.024
$R R_{\omega} \mathrm{S}^{\text {a }}$	0.043, 0.031, 1.0	$0.044,0.061,2.45$
resid peak; e/ \AA^{3}	0.88	0.58
solution	direct method	Patterson synthesis

[^1]TABLE 2. Fractional atomic coordinates for [NE: $\left.{ }_{4}\right]\left[\mathrm{Mo}\left(\mathrm{HBP}_{2}\right)\right.$ $\left(\mathrm{COO}_{3}\right]$ and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{MO}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]$

Atom	x	y	$=$
(a) $/ \mathrm{NEt}_{+} / / \mathrm{Mo}\left(\mathrm{HBPP} z_{y}\right)(\mathrm{CO})_{i} /$			
Mo	$0.0605(1)$	$0.1414(1)$	$0.0669(1)$
N	$0.7863(3)$	$0.1205(2)$	$0.009682)$
N(11)	0.04650 (2)	$0.1837(2)$	$05559(2)$
N(12)	$0.08 .330)$	$0.2571(2)$	(1.5328(2)
N(21)	0.1950(2)	0.18090 (2)	0.6443029
N(22)	0.2134(2)	$0.2520(2)$	$0.607512)$
N(31)	$0.0489(2)$	$0.2832(2)$	$0.6842(2)$
N(32)	$0.0898(3)$	$0.3397(2)$	$0.0429(2)$
O(1)	$0.0792(3)$	0. $1091(3)$	$0.824 .3(2)$
$O(2)$	-0.1246(3)	$0.0848(3)$	(1).0432(2)
O(3)	$0.0947(3)$	$-0.0479(2)$	10.6.348(2)
B	0.1415 (3)	$0.3090)(3)$	0.581303
(11)	$0.0745(3)$	$0.1201(3)$	0.7640 (2)
(12)	--0.0552(3)	$0.1093(3)$	0.682302
C(3)	$0.08200(3)$	$0.024143)$	$0.6469(2)$
(4)	0.8502(4)	$0.0511(4)$	$0.1075(3)$
C(5)	$0.7335(4)$	0.1084(3)	0.0349 (3)
C(6)	0.7279(4)	0.1214(5)	$0.1603(3)$
(77)	$0.8354(4)$	$0.20 .32(4)$	(1.19916(3)
C(8)	$0.9091(5)$	$0.0375(5)$	(1.0481(4)
(19)	$0.6918(4)$	$0.0238(3)$	(101277(3)
C(10)	$0.7702(5)$	$0.1308(8)$	$0.2295(3)$
(11)	$0.7833(5)$	0. 2820 (4)	(0.0885 (5)
C(13)	$0.0628(3)$	$0.2698(3)$	$0.460 .5(2)$
C(14)	0.0135(3)	0,2039(3)	11.44560 2)
C(15)	$0.0049(3)$	0.1520(3)	$0.5025(2)$
C(23)	$0.2982(3)$	$0.2617(3)$	$0.603 .3(3)$
C(24)	$0.3349(3)$	0.1949(4)	1).6.37.4(3)
C(25)	$0.2697(3)$	$0.1468(3)$	1) $60.22(3)$
C(33)	$0.0799(3)$	0.4181(3)	$0.66909(3)$
C(34)	$0.0317(4)$	(1.4133(3)	$0.7272(3)$
(\%35)	$0.0135(3)$	$0.328 .3(3)$	11,73+8(2)
(b) / N(PPh $)_{2} / / \mathrm{Mo}\left(\mathrm{HBT} z_{3}\right)(\mathrm{CO})_{3} /$			
Mo	$0.768202(17)$	$0.358777(10)$	(1.22582200)
O(1)	$0.8 .5777(21)$	$0.29809(11)$	0.1094(3)
$\mathrm{O}(2)$	$0.86708(18)$	0.31898(11)	$0.30971(21)$
$O(3)$	$0.89743(18)$	0.42294(12)	1).22094(21)
C(1)	$0.82347(23)$	$0.32118(13)$	1). 1528 (3)
C(2)	$0.826533(22)$	$0.33401(14)$	$0.3179(3)$
C(3)	$0.84902(21)$	$0.39863(14)$	(1,220.36)
B	0.5818(3)	$0.38246(16)$	0.20)4(43)
N(11)	$0.68981(16)$	$0.4014 .5(10)$	0.30353020)
N(12)	$0.61598(17)$	$0.40568(20)$	$0.28172(20)$
N(14)	$0.633860(19)$	$0.44505(11)$	$0.39782(22)$
N(21)	$0.70055(17)$	$0.38732(10)$	(1.11510(20)
N(22)	$0.62579(17)$	$0.39500(10)$	(1.12201(21)
N(24)	$0.66076022)$	0.42104(13)	- $0.00427(23)$
N(31)	$0.66240(19)$	$0.31915(10)$	(123788(22)
N(32)	$0.543366(18)$	$0.33530)(11)$	(0.22064(21)
N(34)	$0.57576(24)$	$0.26899(12)$	$0.2532(3)$
C(13)	$0.58 .521(22)$	0.43172(13)	$0.34000 .3)$
C(15)	$0.69744(24)$	$0.42556(12)$	0.3728(3)
C(23)	$0.60511(25)$	$0.41487(14)$	$0.04960 .3)$
C(25)	$0.71823(25)$	0.40276(14)	(1.1381(3)
C(33)	$0.5437(3)$	$0.30458(17)$	(1.23016 3)
C(35)	0.64866 (3)	$0.28004(15)$	$0.257363)$
N	$0.57170(18)$	$0.37501(11)$	$0.77408(10)$
P(1)	$0.50041(5)$	$0.35764(3)$	$0.82269(6)$
$\mathrm{P}(2)$	$0.59836(5)$	$0.39014(3)$	0.681356

TABIE 2 (continued)

Alom	1	y	$=$
(11. ${ }^{\text {(}}$	(1. 22606 (21)	(1) $34011(12)$	0.75135050
C(12A)	19.366884(24)	$0.30 .588(1.3)$	$0.7303(3)$
(1.13)	11.31550124	$0.35315(10)$	$11.60888(3)$
($(1+A)$	$0.2221(3)$	$0.31546(10)$	$0.6297(3)$
C(15A)	0.850008	(1,25931015	$0.65038 .3)$
C(16A)	1.4.36902+)	(0.301.301.3)	$0.7097(3)$
(21)	0.5778200	0.31.596(11)	$19.8042 \mathrm{Na3}$
($(22 \mathrm{~A})$	(1.4802+62 ${ }^{(120)}$	$0.28353(13)$	10.9150(3)
(23A)	0.5030433	(1.25358(14)	$0.9749(3)$
($12+\mathrm{A}$)	0.572363	11.25053(14)	1.0159(3)
(125 A)	$0.614+6025)$	$0.2894 .5(1.5)$	(1).4944(3)
(26A)	$0.5088422)$	(1.31875(1.3)	$11.933003)$
((311)	046075011	(1).94757(12)	10.8922(3)
(32A)	0.4212723		10.9674(.3)
(33 A)	0.394803	(1).4774 18 (1.020 31
C(34A)	0.103263	(1,45417(18)	0.9044(4)
(133A)	0.44013)	(1.469\%)(15)	$0.9253(4)$
C(36A)	0.476603	14.4.929 (1) 1 ?	0.871563)
($(1 \pm B)$	$0.60617921)$	(1.43390(11)	$0.695992 .24)$
((12B)	0.688543 .3	(0.44430(13)	$0.7776(3)$
(138)	0.788601	(1.47630917)	0.7872(3)
C(14B)	(1.70430	0.49703(18)	1).7153(3)
((15B)	0.737983	11.4876+(15)	$0.6337(3)$
($(16 \mathrm{~B})$	0.680308	1.4.597.4(16)	$0.6232(3)$
(21B)	0.52388020	0.41671612	$0.60781(24)$
(92B)	19506019 ${ }^{\text {a }}$	(1) $+17600(13)$	$0.6009(3)$
(12.3B)	3) 445 (3)	(1. $+00000(1+3$	0,5532(3)
(24B)	(1.41488(24)	0.43302(15)	(1).4946(3)
(255 B)	(1.4.483525)	$0.39220(14)$	0.4990(3)
(120B)	$0.49287(22)$	0,378411133	$0.5496(3)$
($13 \mid B$)	0.65403821	0.35160111	$0.026+1(25)$
(13.2B)	$0.60773)$	0.35375 10313	(1).5372(3)
C(3,3B)	0.71723)	0.3290916	(1). $19 \mathrm{RO}(3)$
($(3+1 \mathrm{~B})$	0.7545(3)	$0.29757(15)$	$0.5472(3)$
(13513)	11.74118053	0.24431(14)	(1.6.330(3)
($(36 B)$	$0.69001(23)$	$0.32088(13)$	0.075003

$\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): protons at ring -3 and -5 positions, δ $8.35(3 \mathrm{H}$, br) $8.22(3 \mathrm{H}$, br); the central proton of allyl, $3.78(1 \mathrm{H}$, s); the sy-protons of allyl, $3.73(2 \mathrm{H}$, br); the anti-protons of allyl, $1.66(2 \mathrm{H} . \mathrm{d}, \quad l(\mathrm{H}, \mathrm{H})=7.8)$. [$\mathrm{Mo}\left(\mathrm{PhBTz}_{3}\right)(\mathrm{CO})\left(\eta^{3}\right.$-ally $\left.)\right]$, yellow. Anal. Found: C , 41.80; H, 3.35; N. 25.83. $\mathrm{C}_{17} \mathrm{H}_{16} \mathrm{BMoN}_{0} \mathrm{O}_{2}$ calc.: C . 42.09: H, 3.32; N, 25.99%. $\mathrm{IR}(\mathrm{KBr}): ~ p(\mathrm{CO}), 1954 \mathrm{~s}$, 1856s, and IR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \nu(\mathrm{CO}), 1960 \mathrm{~s} .1866 \mathrm{~s} \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}$ NMR ($25^{\circ} \mathrm{C} . \mathrm{CDCl}_{3}, 100 \mathrm{MHz}$): protons at ring- 3 and -5 positions, $\delta 8.39(3 \mathrm{H}, \mathrm{br}), 7.98$ ($3 \mathrm{H}, \mathrm{br}$) $\mathrm{Ph}, 7.80$ $(2 \mathrm{H}, \mathrm{m}), 7.62(3 \mathrm{H}, \mathrm{m})$; the central proton of allyl. 3.87 $(1 \mathrm{H}$, s): the syn-protons of allyl. $3.76(2 \mathrm{H}$. br): the anti-protons of allyl. $1.67(2 \mathrm{H} . \mathrm{d} . J(\mathrm{H}, \mathrm{H})=7.8)$.
2.8. X-Ray diffraction study of $/ \mathrm{NEt}_{+} / / \mathrm{Mo}\left(\mathrm{HBPz}_{3}\right)$ $(\mathrm{CO})_{3} /$ and $/ \mathrm{N}\left(\mathrm{PP}_{3}\right)_{2} / / \mathrm{Mo}_{\mathrm{o}}\left(\mathrm{HBT}_{3}\right)(\mathrm{CO})_{3} /$

All the single erystals were grown from $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ / hexane at room temperature. General procedures and listings of programs were previously given [6a,11]. Absorption correction was performed on the structures

TABLE 3. Selected bond lengths (\AA) and angles $\left({ }^{\circ}\right)$ for $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Mo}\left(\mathrm{HBPz}_{3}\right)(\mathrm{CO})_{3}\right]$ and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]$
(a) $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Mo}\left(\mathrm{HBPz}_{3}\right)(\mathrm{CO})_{3}\right]$
(i) Bond lengths
(i) Bond lengths
$\mathrm{N}-\mathrm{C}(4)$
$\mathrm{N}-\mathrm{C}(5)$
$\mathrm{N}-\mathrm{C}(6)$
$\mathrm{N}-\mathrm{C}(7)$
$\mathrm{Mo}-\mathrm{C}(n)$
$\mathrm{Mo}-\mathrm{N}(n 1)$
$\mathrm{B}-\mathrm{N}(n 2)$
$\mathrm{C}(n)-\mathrm{O}(n)$
$\mathrm{N}(n 1)-\mathrm{N}(n 2)$
$\mathrm{N}(n 2)-\mathrm{C}(n 3)$
$C(n 3)-C(n 4)$
$\mathrm{C}(n 4)-\mathrm{C}(n 5)$
(ii) Bond angles
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(5)$
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(6)$
$\mathrm{C}(4)-\mathrm{N}-\mathrm{C}(7)$
110.1(4)
107.0(4)
$\begin{array}{lll}108.0(4) & \mathrm{N}-\mathrm{C}(6)-\mathrm{C}(10) & 114.9(5)\end{array}$
$107.7(4) \quad \mathrm{N}-\mathrm{C}(7)-\mathrm{C}(11) \quad 115.8(5)$
$84.9(2) \quad \mathrm{C}(1)-\mathrm{Mo}-\mathrm{N}(11) \quad 172.9(2)$

C(1)-Mo-C(2)
90.4(2)
$86.8(2) \quad \mathrm{C}(1)-\mathrm{Mo}-\mathrm{N}(31) \quad 92.1(1)$
$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(21)$
$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(31)$
$\mathrm{N}(21)-\mathrm{Mo}-\mathrm{N}(31)$
$\mathrm{N}(12)-\mathrm{B}-\mathrm{N}(22)$
$\mathrm{N}(12)-\mathrm{B}-\mathrm{N}(32)$
80.0(1)
$\begin{array}{ll}\mathrm{C}(1)-\mathrm{Mo}-\mathrm{N}(21) & 97.4(2) \\ \mathrm{C}(1)-\mathrm{Mo}-\mathrm{N}(31) & 92.1(1)\end{array}$
$80.9(1) \quad \mathrm{C}(2)-\mathrm{Mo}-\mathrm{N}(11) \quad 97.6(2)$
$80.4(1) \quad \mathrm{C}(2)-\mathrm{Mo}-\mathrm{N}(31) \quad 99.2(2)$
$109.3(4) \quad \mathrm{C}(3)-\mathrm{Mo}-\mathrm{N}(11) \quad 96.4(2)$
$108.9(4) \quad \mathrm{C}(3)-\mathrm{Mo}-\mathrm{N}(21) \quad 93.5(2)$
$109.0(4) \quad \mathrm{C}(3)-\mathrm{Mo}-\mathrm{N}(31) \quad 173.6(2)$

$n=1$	$n=2$	$n=3$
$121.2(3)$	$122.0(3)$	$121.4(3)$
$132.8(3)$	$131.8(3)$	$131.9(3)$
$176.7(5)$	$176.0(4)$	$179.7(5)$
$120.0(3)$	$119.9(4)$	$120.4(3)$
$130.2(4)$	$130.4(4)$	$130.4(4)$
$109.7(4)$	$109.6(4)$	$109.1(4)$
$108.0(4)$	$107.7(5)$	$108.9(4)$
$105.8(4)$	$106.1(5)$	$105.0(5)$
$110.6(4)$	$110.4(5)$	$110.6(4)$
$106.0(3)$	$106.2(4)$	$106.4(4)$

(b) $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2} /\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]\right.$
(i) Bond lengths

$\mathrm{N}-\mathrm{P}(1)$	$1.574(3)$	$\mathrm{C}(32 \mathrm{~A})-\mathrm{C}(33 \mathrm{~A})$	$1.375(6)$
$\mathrm{N}-\mathrm{P}(2)$	$1.575(3)$	$\mathrm{C}(33 \mathrm{~A})-\mathrm{C}(34 \mathrm{~A})$	$1.388(8)$
$\mathrm{P}(1)-\mathrm{C}(11 \mathrm{~A})$	$1.799(4)$	$\mathrm{C}(34 \mathrm{~A})-\mathrm{C}(35 \mathrm{~A})$	$1.359(9)$
$\mathrm{P}(1)-\mathrm{C}(21 \mathrm{~A})$	$1.796(4)$	$\mathrm{C}(35 \mathrm{~A})-\mathrm{C}(36 \mathrm{~A})$	$1.394(7)$
$\mathrm{P}(1)-\mathrm{C}(31 \mathrm{~A})$	$1.808(4)$	$\mathrm{C}(1 \mathrm{~B})-\mathrm{C}(12 \mathrm{~B})$	$1.376(5)$
$\mathrm{P}(2)-\mathrm{C}(11 \mathrm{~B})$	$1.804(4)$	$\mathrm{C}(11 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	$1.383(5)$
$\mathrm{P}(2)-\mathrm{C}(21 \mathrm{~B})$	$1.794(4)$	$\mathrm{C}(12 \mathrm{~B})-\mathrm{C}(13 \mathrm{~B})$	$1.403(6)$
$\mathrm{P}(2)-\mathrm{C}(31 \mathrm{~B})$	$1.803(4)$	$\mathrm{C}(13 \mathrm{~B})-\mathrm{C}(14 \mathrm{~B})$	$1.367(8)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})$	$1.386(6)$	$\mathrm{C}(14 \mathrm{~B})-\mathrm{C}(15 \mathrm{~B})$	$1.372(7)$
		$\mathrm{C}(15 \mathrm{~B})-\mathrm{C}(16 \mathrm{~B})$	$1.384(6)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	$\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(22 \mathrm{~B})$	$1.386(6)$	
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	$\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(26 \mathrm{~B})$	$1.402(5)$	
$\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$\mathrm{C}(22 \mathrm{~B})-\mathrm{C}(23 \mathrm{~B})$	$1.370(6)$	
$\mathrm{C}(14 \mathrm{~A})-\mathrm{C}(15 \mathrm{~A})$	$\mathrm{C}(23 \mathrm{~B})-\mathrm{C}(24 \mathrm{~B})$	$1.373(7)$	
$\mathrm{C}(15 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	$\mathrm{C}(24 \mathrm{~B})-\mathrm{C}(25 \mathrm{~B})$	$1.373(7)$	

TABLE 3 (continued)

$C(21 A)-C(22 A)$	1.382(5)	(258)-(268)	$1.376(6)$
C(21A)-C(26A)	$1.404(5)$	C(31B)-($(32 \mathrm{~B})$	1.392(6)
C(22A)-C(23A)	1.3846 (6)	C(31B)-C(36B)	$1.381(5)$
C(23A)-C(24A)	$1.389(7)$	($(3,2 \mathrm{~B})-\mathrm{C}(33 \mathrm{~B})$	$1.364(6)$
$\mathrm{C}(24 \mathrm{~A})-\mathrm{C}(25 \mathrm{~A})$	$1.387(7)$	C(33B) - (134 B$)$	1.372(7)
C(25A)-C(26A)	$1.372(6)$	C(34B) - (35 B)	1.350 O
C(31A)-C(32A)	$1.391(6)$	($(35 \mathrm{~B})$ - (3 (30B)	$1.299(6)$
C(31A)-C(36A)	$1.381(6)$		
	$n-\overline{-1}$	$n=2$	$11=.3$
Mo-C(n)	$1.917(4)$	$1.924(4)$	$1.926(4)$
Mo-N($n \mathrm{l})$	$2.288(3)$	$2.274(3)$	$2279(3)$
$\mathrm{B}-\mathrm{N}(n 2)$	$1530(6)$	$1.535(6)$	1.5456
$\mathrm{C}(n)-\mathrm{O}(n)$	1.167(5)	1.176(5)	1.16? 515
$\mathrm{N}(n 1)-\mathrm{N}(n 2)$	$1.364(4)$	1.359(4)	$1.301 \times 5)$
$\mathrm{N}(n 2)-\mathrm{C}(n 3)$	$1.340(5)$	$1.332(5)$	$1.331(0)$
$\mathrm{C}(n 3)-\mathrm{N}(n 4)$	$1.311(5)$	$1.305(6)$	1.32277
$\mathrm{N}(n 4)-\mathrm{C}(n 5)$	$1.349(5)$	$1.340(6)$	1.3.46(7)
$\mathrm{C}(155)-\mathrm{N}(n 1)$	$1.320(5)$	$1.318(5)$	1.3116)
(ii) Bond angles			
$\mathrm{C}(1)-\mathrm{Mo}-\mathrm{C}(2)$	$83.84(18)$	C(1)-Mo-N(11)	173.13(15)
C(1)-Mo-C(3)	$90.37(18)$	C(1)-Mo-N(21)	$45.07(16)$
C(2)-Mo-C(3)	84.35 (18)	C(1) Mo-N(31)	97.04(15)
$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(21)$	$79.93(11)$	($(2)-\mathrm{Mo}$ - $\mathrm{N}(11)$	101.15(14)
$\mathrm{N}(11)-\mathrm{Mo}-\mathrm{N}(31)$	77.61(11)	C(2)-Mo-N(21)	178.91(14)
$\mathrm{N}(21)-\mathrm{Mo}-\mathrm{N}(31)$	$81.14(12)$	C(2)-Mo-N(31)	$90.67(15)$
$\mathrm{N}(12)-\mathrm{B}-\mathrm{N}(22)$	107.9(3)	((3)-Mo-N(11)	44.79(1.5)
$\mathrm{N}(12)-\mathrm{B}-\mathrm{N}(32)$	107.143)	C(3)-Mo-N(21)	$95.58(1+1)$
$\mathrm{N}(22)-\mathrm{B}-\mathrm{N}(32)$	108.8(3)	C(3)-Mo-N(3)	172.11(15)
$\mathrm{N}-\mathrm{P}(2)-\mathrm{C}(11 \mathrm{~B})$	$108.56(17)$	$P(1)-(31 A)-C(36 A)$	$119.9(3)$
$\mathrm{N}-\mathrm{P}(2)-\mathrm{C}(2 \mid \mathrm{B})$	$116.17(17)$	(832 A$)-\mathrm{C} 31 \mathrm{~A}) \mathrm{C}(36 \mathrm{~A})$	$119.5(4)$
$\mathrm{N}-\mathrm{P}(2)-\mathrm{C}(3 \mid \mathrm{B})$	112.01(18)	C(31A)-(632)- $(33 \mathrm{~A})$	120.2(4)
$C(11 B)-P(2)-C(21 B)$	$106.74(18)$	($(22 \mathrm{~A})-\mathrm{C}(33 \mathrm{~A})-(3+\mathrm{A})$	119.965
$C(11 B)-P(2)-C(31 B)$	$104.77(17)$	C(33A)-(34 A$)-\mathrm{C}(35 \mathrm{~A})$	120.4(4)
$\mathrm{C}(21 \mathrm{~B})-\mathrm{P}(2)-\mathrm{C}(31 \mathrm{~B})$	$107.88(18)$	(34 A$)(635 \mathrm{~A})-(36 \mathrm{~A})$	$120.2(5)$
$P(1)-C(11 A)-C(12 A)$	121.2(3)	($(312)-(36 A)-(35 A)$	$119.9(4)$
$\mathrm{P}(1)-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	119.2(3)	$\mathrm{P}(2)-\mathrm{C}(11 \mathrm{~B})-(12 \mathrm{~B})$	119.4(3)
$C(12 \mathrm{~A})-\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(16 \mathrm{~A})$	$119.3(4)$	$P(2) \mathrm{C}(113)-\mathrm{C}(16 \mathrm{~B})$	$120.043)$
$\mathrm{C}(11 \mathrm{~A})-\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})$	$119.6(4)$	$C(12 B)-C(11 B)-C(16 B)$	120.54
$\mathrm{C}(12 \mathrm{~A})-\mathrm{C}(13 \mathrm{~A})-\mathrm{C}(14 \mathrm{~A})$	$120.8(4)$	$C(11 B)-C(12 B)-(1,3 B)$	119.94
$C(13 A)-C(14 A)-C(15 A)$	$120.6(4)$	$(C(12 B)-C(13 B)-((14 B)$	119.94
$C(14 A)-C(15 A)-C(16 A)$	$120.5(4)$	($(13 B)-(14 B)$ C(15B)	$120.8(4)$
C(11A)-C(16A)-C(15A)	$119.1(4)$	C(14B)-C(15B)-C(16B)	119.8(4)
$\mathrm{P}(1)-\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(22 \mathrm{~A})$	122.4(3)	C(11B)-(116 B$)-\mathrm{C} 15 \mathrm{~B})$	149.8(4)
$\mathrm{P}(1)-\mathrm{C}(21 \mathrm{~A})-\mathrm{C}(26 \mathrm{~A})$	117.4(3)	$\mathrm{P}(2)-\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(22 \mathrm{~B})$	$120.2(3)$
C(22A)-C(21A)-C(26A)	120.1(3)	$P(2)-(121 B)-(120 B)$	120.7(3)
C(21A)-C(22A)-(23 A$)$	$119.5(4)$	(22 B) $\mathrm{C}(21 \mathrm{~B})-\mathrm{C}(26 \mathrm{~B})$	119.163
C(22A)-C(23A)-($(24 \mathrm{~A})$	120.9(4)	C(21B) - $\mathrm{C}(22 \mathrm{~B})-(23 \mathrm{~B})$	$120.6(4)$
$\mathrm{P}(1)-\mathrm{N}-\mathrm{P}(2)$	141.19(21)	C(22B) (233 B$)(\mathrm{C} 24 \mathrm{~B})$	$120.1(1)$
$\mathrm{N}-\mathrm{P}(1)-\mathrm{C}(11 \mathrm{~A})$	114.31(17)	C(23B)-C(24B) (03B)	$120.2(4)$
$\mathrm{N}-\mathrm{P}(1)-\mathrm{C}(21 \mathrm{~A})$	$109.42(17)$	($(24 B)-C(25 B)-(26 B)$	120.64 (
$\mathrm{N}-\mathrm{P}(1)-\mathrm{C}(31 \mathrm{~A})$	110.14(18)	(218) C $^{(26 B)-(C D B) ~}$	119.4(4)
$\mathrm{C}(11 \mathrm{~A})-\mathrm{P}(1)-\mathrm{C}(21 \mathrm{~A})$	$109.77(18)$	$P(2) \times(31 B)-C(32 B)$	$121.003)$
C(11A)-P(1)-C(31A)	$107.06(17)$	$P(2)-C(31 B)-(136 B)$	114.363)
$\mathrm{C}(21 \mathrm{~A})-\mathrm{P}(1)-\mathrm{C}(31 \mathrm{~A})$	105.77(18)	C(32B)-C(31B)-(136B)	119.4(4)
C(23A)-C(24A)-C(25A)	118.8(4)	$\mathrm{C}(31 \mathrm{~B})-\mathrm{C}(32 \mathrm{~B})-(13.3 \mathrm{~B})$	$120.1(4)$
C(24A) (25 A $)(26 \mathrm{~A})$	121.2(4)	C(32B)-C(33B) (34 B)	$120.6(4)$
C(21A)-C(26A)-C(25A)	119.3(4)	C(3, ${ }^{(13)-C(34 B)-C(35 B) ~}$	120.044
$\mathrm{P}(1)-\mathrm{C}(31 \mathrm{~A})-\mathrm{C}(32 \mathrm{~A})$	120.6(3)	C(34B)-C(35B)-C(36B)	$120.9(4)$
		C(31B) - $\mathrm{C}(36 \mathrm{~B})-(3513)$	118,9(4)

TABLE 3 (continued)

	$n=1$	$n=2$	$n=3$
$-\mathrm{N}(n 1)-\mathrm{N}(n 2)$	$122.29(23)$	$121.35(22)$	$121.36(23)$
$\mathrm{Mo}-\mathrm{N}(n 1)-\mathrm{C}(n 5)$	$133.9(3)$	$134.8(3)$	$177.9(3)$
$\mathrm{Mo}-\mathrm{C}(n)-\mathrm{O}(n)$	$178.9(4)$	$174.6(3)$	$121.6(3)$
$\mathrm{B}-\mathrm{N}(n 2)-\mathrm{N}(n 1)$	$121.1(3)$	$121.7(3)$	$130.7(4)$
$\mathrm{B}-\mathrm{N}(n 2)-\mathrm{C}(n 3)$	$131.8(3)$	$131.2(3)$	$107.4(4)$
$\mathrm{N}(n 1)-\mathrm{N}(n 2)-\mathrm{C}(n 3)$	$107.0(3)$	$112.0(3)$	$101.7(4)$
$\mathrm{N}(n 2)-\mathrm{C}(n 3)-\mathrm{N}(n 4)$	$112.9(4)$	$102.3(3)$	$115.0(5)$
$\mathrm{C}(n 3)-\mathrm{N}(n 4)-\mathrm{C}(n 5)$	$101.9(4)$	$114.4(4)$	$103.7(4)$
$\mathrm{N}(n 4)-\mathrm{C}(n 5)-\mathrm{N}(n 1)$	$114.4(4)$	$103.8(3)$	N
$\mathrm{N}(n 2)-\mathrm{N}(n 1)-\mathrm{C}(n 5)$	$103.7(3)$		

using ψ scans. Related crystal data (Table 1), final coordinates of the non-hydrogen atoms (Table 2), and selected bond lengths and bond angles (Table 3) are reported. The anisotropic displacement coefficients of the atoms, the H -atom coordinates and structural factors are available from the authors. The ortep plots for anions, $\left[\mathrm{Mo}\left(\mathrm{HBPz}_{3}\right)(\mathrm{CO})_{3}\right]^{-}$and $\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)\right.$ -$\left.(\mathrm{CO})_{3}\right]^{-}$were all quite similar and are shown as one plot (Fig. 1).

3. Results and discussion

The KHBTz_{3} salt can be obtained in an analogous way to the preparation of KHBPz_{3} [12] from the melt reaction of KBH_{4} in excess HTz at $200^{\circ} \mathrm{C}$. Although a

Fig. 1. ORTEP plot for anions, $\left[\mathrm{Mo}\left(\mathrm{HBPz}_{3}\right)(\mathrm{CO})_{3}\right]^{--}(\mathrm{X}=\mathrm{C})$ and $\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]^{-}(\mathrm{X}=\mathrm{N})$, showing the numbering scheme. The ellipsoids were drawn at the 50% probability level.
similar reaction between NaBPh_{4} and HPz at high temperatures gives only the disubstituted product $\mathrm{NaPh}_{2} \mathrm{BPz}_{2}$ [13], the reaction between NaBPh_{4} and HTz first affords $\mathrm{NaPh}_{2} \mathrm{BTz}_{2}[14]$ and then $\mathrm{NaPhBTz}_{3}$, reflecting the proton of HTz being more acidic than that of HPz [15]. The L anion $\left(\mathrm{L}^{-}=\mathrm{HBTz}_{3}{ }^{-}\right.$or $\mathrm{PhBTz}_{3}{ }^{-}$) can replace the three mutually cis-carbonyls of $\left[\mathrm{Mo}(\mathrm{CO})_{6}\right]$ in a similar way to $\mathrm{HBPz}_{3}{ }^{-}$, $\mathrm{HBPz}_{3}{ }^{-}$ [17], $\mathrm{HBPz}_{3}^{\prime \prime}-$ [8], HBBz_{3}^{-}[6a], or $\mathrm{HBPz}_{3}^{\star^{-}}$[16] $\left(\mathrm{Pz}^{\prime}=\right.$ 3,5-dimethylpyrazol-1-yl; $\quad \mathrm{Pz}^{\prime \prime}=3,4,5$-trimethylpyrazol-$1-\mathrm{yl} ; \quad \mathrm{Pz}^{*}=3$-methylpyrazol-1-yl; $\quad \mathrm{Bz}=$ benzotriazol- $1-$ yl) to give $\left[\mathrm{MoL}(\mathrm{CO})_{3}\right]^{-}$. The addition of electrophiles to $\mathrm{M}\left[\mathrm{MoL}(\mathrm{CO})_{3}\right](\mathrm{M}=\mathrm{Na}$ or K$)$ or $\left[\mathrm{Et}_{4} \mathrm{~N}\right]\left[\mathrm{MoL}(\mathrm{CO})_{3}\right]$ converts the salts readily into $\left[\mathrm{MoL}(\mathrm{CO})_{3} \mathrm{X}\right](\mathrm{X}=\mathrm{Br}$ or I$),\left[\mathrm{MoL}(\mathrm{CO})_{2}(\mathrm{NO})\right]$, and $\left[\mathrm{MoL}(\mathrm{CO})_{2}\left(\eta^{3}\right.\right.$-allyl)] (Scheme 1). Apparently, the reaction chemistry of $\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]^{-}$or $\left[\mathrm{Mo}\left(\mathrm{PhBTz}_{3}\right)(\mathrm{CO})_{3}\right]^{-}$is quite similar to that of $\left[\mathrm{Mo}\left(\mathrm{HBPz}_{3}\right)(\mathrm{CO})_{3}\right]^{-},\left[\mathrm{Mo}^{(} \mathrm{HBPz}_{3}^{\prime}\right)-$ $\left.(\mathrm{CO})_{3}\right]^{-}[1]$ or $\left[\mathrm{Mo}\left(\mathrm{HBBz}_{3}\right)(\mathrm{CO})_{3}\right]^{-}$[6a] towards the electrophiles we used in this study.

All the anions, $\left[\mathrm{MoL}^{\prime}(\mathrm{CO})_{3}\right]^{-} \quad\left(\mathrm{L}^{\prime}=\mathrm{HBPz}_{3}{ }^{-}\right.$, $\mathrm{HBPz}_{3}^{\prime-}, \mathrm{HBPz}_{3}^{\prime \prime-}, \mathrm{HBPz}_{3}^{*-}, \mathrm{HBBz}_{3}^{-}, \mathrm{HBTz}_{3}{ }^{-}$, or $\mathrm{PhBTz}_{3}{ }^{-} ; \mathrm{Pz}^{\prime \prime}=3,4,5$-trimethylpyrazol-1-yl), belong to the point group of $\mathrm{C}_{3 \mathrm{v}}$ and display one strong $\left(\mathrm{A}_{1}\right)$ and one very strong (E) carbonyl stretching bands in solution. The averaged $\nu(\mathrm{CO})$ values taken as $1 / 3 \nu\left(\mathrm{~A}_{1}\right)+$ $2 / 3 \nu$ (E) for the anions measured in MeCN are calculated as follows: $\mathrm{L}^{\prime}=\mathrm{HBBz}_{3}{ }^{-}, 1834 \mathrm{~cm}^{-1}$ [6a]; $\mathrm{HBPz}_{3}{ }^{-}, 1806 \mathrm{~cm}^{-1} ; \mathrm{HBPz}_{3}^{--}, 1798 \mathrm{~cm}^{-1}$ [17]; $\mathrm{HBPz}_{3}^{\prime \prime-}$,

Scheme 1.
$1793 \mathrm{~cm}^{-1}$ [8]; $\mathrm{HBPz}_{3}^{*}, 1799 \mathrm{~cm}^{-1}$ [16]; $\mathrm{HBT}_{3}{ }_{3}{ }^{*}, 1819$ cm^{-1}; and $\mathrm{PhBT}_{3}{ }^{-}, 1818 \mathrm{~cm}^{-1}$, indicating the increasing order of electron donating power as HBBz_{3} $<\mathrm{HBTz}_{3}{ }^{-}, \mathrm{PhBT}_{3} \cdots<\mathrm{HBP}_{3}{ }_{3}{ }^{-}<\mathrm{HBPz}_{3}^{\prime}, \mathrm{HBP}_{3}^{*-}<$ $\mathrm{HBPz}_{3}^{\prime \prime}$. The weaker donating ability of HBTz_{3} "compared with that of HBPz_{3} is compatible with HTz being more acidic than HPz_{2} [15]. From these values. it is clear that (1) the replacement of the hydrogen atom on the boron atom by a phenyl group in HBTz_{3} (to give $\mathrm{PhBTz}_{3}{ }^{-}$) or the replacement of the hydrogen atoms on the pyrazolyl ring- 5 position with the methyl groups in HBP_{3}^{*-} (to give $\mathrm{HBP}_{3}^{\prime}{ }^{-}$) docs not change at all the donating ability of the relevant ligands; (2) the substitution of the hydrogen atoms on pyrazolyl ring $-3,-4$, or -5 position with methyl groups, converting from $\mathrm{HBP}_{3} ;{ }^{\prime \prime}$ to $\mathrm{HBPz}_{3}^{\prime-}$ or $\mathrm{HBPz}_{3}^{\prime \prime-}$ increases the ability slightly and (3) the replacement of the CH atoms on pyrazolyl ring- 3 or -4 position by a nitrogen atom in making Bz or Tz , respectively, do weaken this ability. As reported earlier [6a], the complete reaction between $\left[\mathrm{Mo}\left(\mathrm{HBBz}_{3}\right)(\mathrm{CO})_{3}\right]^{-3}$ and allyl bromide needs about 17 h while a similar reaction takes only about 3 h for $\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]^{-1}$ or $\left[\mathrm{Mo}\left(\mathrm{PhBTz}_{3}\right)(\mathrm{CO})_{3}\right]^{\text {, }}$, showing that the much weaker donativity of HBBz_{3} retards more strongly the oxidative allyl bromination of $\left[\mathrm{MoL}(\mathrm{CO})_{3}\right]^{-} \quad\left(\mathrm{L}^{-}=\mathrm{HBT}_{3}{ }^{-}, \mathrm{PhBT}_{3}{ }^{-}\right.$or $\left.\mathrm{HBBz}_{3}{ }^{-}\right)$ than $\mathrm{HBT}_{z_{3}}{ }^{-}$or $\mathrm{PhBTz}_{3}{ }^{-}$. Thus, the replacement of the CH atoms on the ring- 3 position by a nitrogen atom has a stronger effect than the substitution on the ring-4 position.

In order further to compare the relevant structure features of $\left[\mathrm{MoL}^{\prime}(\mathrm{CO})_{3}\right]^{\quad-\quad} \quad\left(\mathrm{L}^{\prime}=\mathrm{HBP}_{3}{ }^{\cdots}, \mathrm{HBPz}_{3}^{\prime}\right.$, $\mathrm{HBTz}_{3}{ }^{-}$, or HBPz_{3}^{*-}), we determined the solid-state structures of $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Mo}\left(\mathrm{HBPz}_{3}\right)(\mathrm{CO})_{3}\right]$ (1) and $\left[\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}\right]\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]$ (4). The two anions are isostructural (Fig. 1), as expected, to $\left[\mathrm{NEt}_{4}\right][\mathrm{Mo}-$
$\left.\left(\mathrm{HBPz}_{3}^{\prime}\right)(\mathrm{CO})_{3}\right]$ (3) $[19]$ and $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Mo}\left(\mathrm{HBP}_{3}^{*}\right)(\mathrm{CO})_{3}\right]$ (2) [16]. To our surprise. 1 and 4 are even X-ray isomorphous in a space group of Pbea. Apparently, the cone angles of $\mathrm{HBP}_{3}{ }^{-}$and HBT_{3} " should be similar and the two similar anions $\left[\mathrm{Mo}_{3}\left(\mathrm{HBP}_{3}\right)(\mathrm{CO})_{3}\right]^{-\quad}$ and $\left[\mathrm{Mo}\left(\mathrm{HBTz}_{3}\right)(\mathrm{CO})_{3}\right]$ being larger than the cations NEl_{4}. or $\mathrm{N}\left(\mathrm{PPh}_{3}\right)_{2}$. determines the packing habit in the crystal [18]. As the methyl groups replace the hydrogen atoms symmetrically at the pyrazolyl ring- 3 and -5 positions, converting HBP_{7}; " into $\mathrm{HBPz}_{;}^{\prime-}$, this changes the habit to the space group of lower symmetry $\left(P h a 2_{i}\right)$ for $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Mo}\left(\mathrm{HBP}_{3}^{\prime}\right)(\mathrm{CO})_{3}\right]\left[1^{\circ}\right]$ and the less symmetric replacement of the hydrogen atoms, at the ring- 3 position only, by methyl groups in the process of formation of $\mathrm{HBPz}_{;}^{*}$ from HBP_{3}, " results in the space group of much lower symmetry $\left(P 2_{1}\right)$ for $\left[\mathrm{NEt}_{4}\right]\left[\mathrm{Mo}^{\left.\left(\mathrm{HBP}_{2}^{*}\right)(\mathrm{CO})_{3}\right][16] .}\right.$

Some averaged bond lengths and angles calculated from the structures of anions $\left[\mathrm{MoL}^{\prime}(\mathrm{CO})_{3}\right] \quad\left(\mathrm{L}^{\prime}=\right.$ $\mathrm{HBPz}_{3}, \mathrm{HBP}_{2} ; \cdots \mathrm{HBTz}_{3}$, or HBPz_{i}^{*}) are listed in Table 4. From this table, it is clear that the angle $C(n)-\mathrm{Mo}-\mathrm{C}\left(n^{\prime}\right)$ of 844° in 3 is smaller than that of 88.0° in 1 . reflecting the different steric encumbrances (the cone angle is measured as 180 or 184° for HBP_{3}; and 224 or 225° for $\mathrm{HBP}_{3}^{\prime}$ [20,21]). Since the angle. $\mathrm{C}(\mathrm{n})-\mathrm{Mo}-\mathrm{C}\left(\mathrm{n}^{\prime}\right)$, is 85.3° in 2 (Table 4), it is reasonable to assume that the cone angle of $\mathrm{HBP}_{2}^{*}{ }_{3}^{*}$ is less than that of $\mathrm{HBP}_{3}{ }^{-\cdots}$ though larger than in $\mathrm{HBP}_{3}{ }^{-}$. However. the angle should be used with caution as the Mo-N(nl) and Mo-C(n) distances may be different. The angle of 86.2° in 4 , larger than that in 1 , cannot be used to infer that the cone angle for HBTz_{3} is larger than that for $\mathrm{HBP}_{\mathrm{z}}$, rather it has something to do with the longer $\mathrm{Mo}-\mathrm{N}$ distance $(\mathrm{Mo}-\mathrm{N}=2.280 \AA$ in 4 s. $2.265 \AA$ in 1 and $\mathrm{Mo}-\mathrm{C}=1.922 \AA$ in 4 rs. $1.925 \AA$ in 1). which may reflect the donativity of HBtz_{3} - being

TABLE 4. Averaged bond lengths (\AA) and angles (${ }^{\circ}$ for $\left[\mathrm{MoL}(\mathrm{CO})_{3}\right]^{-}$

L	HBPz_{3}	HBPz^{*}	$\mathrm{HBP} \mathrm{F}_{5}$	$\mathrm{HBT}_{3}{ }^{-}$
$\mathrm{Mo}-\mathrm{C}(n)$	$1.925[1]$	$1.928[10]$	1.941 [4]	1.922 [5]
$\mathrm{C}(n)-\mathrm{O}(n)$	1.176 [9]	$1.168[14]$	1.167 [5]	1.168 [7]
Mo-N($n 1$)	$2.265[6]$	2285 [5]	2.263 [5]	2.280 [7]
$\mathrm{B}-\mathrm{N}(n 2)$	1.538 [12]	$1.532[8]$	1.535 [11]	$1.537[8]$
$\mathrm{N}(n 1)-\mathrm{N}(n 2)$	1.366 [6]	$1.363[5]$	$1.376[11]$	1.361 [4]
$\mathrm{N}(n 2)-\mathrm{C}(n 3)$	1.348 [7]	1.346 [17]	$1.365[9]$	1.334[5]
$\mathrm{C}(n 3)-\mathrm{X}(n 4)^{\text {b }}$	1,367[0]	$1.350[20]$	$1.351[10]$	1.31319
$\mathrm{X}\left(n^{4}\right)-\mathrm{C}\left(n^{5}\right)$	$1.378[7]$	$1.391[15]$	1.388[27]	1.347 [2]
$\mathrm{C}(n 5)-\mathrm{N}(n 1)$	$1.336[10]$	1.335167	1.341 [29]	$1.316[5]$
$\mathrm{N}(n 1)-\mathrm{Mo}-\mathrm{N}\left(n^{\prime} 1\right)$	80.4 [5]	81.17 [8]	81.3 [11]	79.6[18]
$\mathrm{N}\left(n^{2}\right)-\mathrm{B}-\mathrm{N}\left(n^{\prime} 2\right)$	$109.1[2]$	109.0 [7]	$109.2[3]$	$107.9[9]$
$\mathrm{C}\left(n^{\prime}\right)-\mathrm{Mo}-\mathrm{C}\left(n^{\prime}\right)$	88.0 [29]	85.3 [10]	$84.4[11]$	80.2 [30]
Reference	this work	[16]	[19]	this work

[^2]weaker than that of $\mathrm{HBPz}_{3}{ }^{-}$, as observed in the larger averaged carbonyl-stretching value stated above. The Mo-N distance is $2.285 \AA$ in 2 but $2.263 \AA$ in 3 , giving only weak support to the 5-methyl-group effect for nickel pseudohalides suggested by Trofimenko et al. [9], whereby the presumed nonbonded repulsive interactions among the methyl groups at the ring-5 position are alleviated by tightening of the "bite" of the tridentate ligands around the metal atom with shortening $\mathrm{Mo}-\mathrm{N}$ distances. It is probably true from the similarity of the Mo-N distances of $2.265 \AA$ in 1 and $2.263 \AA$ in 3 that the averaged value of $2.264 \AA$ from the two may represent the closest distance between the tripodal ligand and the metal atom in $\mathbf{1 - 4}$. Thus, if the 5 -methyl-group effect is present at all in metal compounds, this effect should be manifested more clearly in the four-coordinate complexes such as the nickel compounds used by these other workers [9] compared with that in the six-coordinate compounds used in this paper.

Acknowledgment

We wish to thank the National Science Council of the Republic of China for financial support of this research (Contract No. NSC82-0208-M006-32).

References

1 (a) S. Trofimenko, Acc. Chem. Res., 4 (1971) 17; (b) S. Trofimenko, Chem. Rev., 72 (1972) 497; (c) S. Trofimenko, Adv. Chem., 150 (1976) 289; (d) A. Shaver, J. Organomet. Chem. Libr., 3 (1977) 157; (e) S. Trofimenko, Prog. Inorg. Chem., 34 (1986) 115.

2 (a) D.G. Hamilton, X.-L. Lou and R.H. Crabtree, Inorg. Chem., 28 (1989) 3198; (b) R.S. Tanke and R.H. Crabtree, Inorg. Chem., 28 (1989) 3444.
3 (a) N. Kitajima, K. Fujisawa, Y. Moro-oka and K. Toriumi, J. Am. Chern. Soc., 111 (1989) 8975; (b) R. Han and G. Parkin, J.

Am. Chem. Soc., 112 (1990) 3662; (c) N. Kitajima, T. Koda, Y. Iwata and Y. Moro-oka, J. Am. Chem. Soc., 112 (1990) 8833; (d) I.A. Degam, W.A. Herrmann and E. Herdtweck, Chem. Ber., 123 (1990) 1347.

4 I.W. Eagan, Ir., B.S. Hagerty, A.I.. Rheingold, S.C. Sendlinger and K.H. Theopold, J. Am. Chem. Soc., 112 (1990) 2445.
5 (a) C.K. Ghosh and W.A.G. Graham, J. Am. Chem. Soc., 109 (1987) 4726; (b) C.K. Ghosh, P.S. Rodgers and W.A.G. Graham, J. Chem. Soc., Chem. Commun., (1988) 1511; (c) C.K. Ghosh and W.A.G. Graham, J. Am. Chem. Soc., 111 (1989) 375; (d) C.K. Ghosh, J.K. Hoyano, R. Krentz and W.A.G. Graham, J. Am. Chem. Soc., 111 (1989) 5480; (e) F.A. Cotton and R.L. Luck, Inorg. Chem., 28 (1989) 3210.
6 (a) K.-B. Shiu, F.-M. Shen, S.-L. Wang and S.-C. Wei, J. Organomet. Chem., 372 (1989) 251; (b) F.J. Lalor, S. Miller and N. Garvey, J. Organomet. Chem., 356 (1988) C57.

7 (a) M.D. Curtis and K.-B. Shiu, Inorg. Chem., 24 (1985) 1213; (b) M.D. Curtis, K.-B. Shiu and W.M. Butler, J. Am. Chem., Soc., 108 (1986) 1550; (c) M.D. Curtis, K.-B. Shiu, W.M. Butler and J.C. Huffman, J. Atn. Chem. Soc., 108 (1986) 3335.

8 K.-B. Shiu and L.-Y. Lee, J. Chin. Chem. Soc., 36 (1989) 31.
9 S. Trofimenko, J.C. Calabrese, J.K. Kochi, S. Wolowiec, F.B. Hulsbergen and J. Reedijk, Inorg. Chem., 31 (1992) 3943.
10 D.F. Shriver (Ed.), Manipulation of Air-Sensitive Compounds, McGraw-Hill, New York, 1969.
11 K.-B. Shiu, C.-J. Chang, Y. Wang and M.-C. Cheng, J. Chin. Chem. Soc. (Taipei), 36 (1989) 25.
12 S. Trofimenko, Inorg. Synth., 12 (1970) 99.
13 S. Trofimenko, J. Am. Chem. Soc., 89 (1967) 6288.
14 Jean Y. Lee, M. Sc. Thesis, National Cheng Kung University, 1990.

15 A.R. Katritzky and C.W. Rees, Compr. Heterocycl. Chem., 5 (1984) 50.

16 T.J. Desmond, F.J. Lalor, G. Ferguson and M. Parvez, J. Organomet. Chem., 277 (1984) 91.
17 S. Trofimenko, J. Am. Chem. Soc., 91 (1969) 588.
18 (a) F. Basolo, Coord. Chern. Rec., 3 (1968) 213; (b) A. Gavezzolti, J. Am. Chem. Soc., 105 (1983) 5220; (c) D.M.P. Mingo and A.L. Rohl, Inorg. Chem., 30 (1991) 3769.
19 C.P. Marabella and J.H. Enemark, J. Organomet. Chem., 226 (1982) 57.

20 E. Frauendorfer and H. Brunner, J. Organomet. Chem., 240 (1982) 371.

21 S. Trofimenko, J.C. Calabrese and J.S. Thompson, Inorg. Chem., 26 (1987) 1507.

[^0]: Correspondence to: Dr. K.-B. Shiu.

[^1]: ${ }^{\text {a }}$ See ref. [6a,11].

[^2]: $L^{\prime}=\mathrm{HBP}_{3}, \mathrm{HBP}_{3}^{*}{ }^{*-}$ or $\mathrm{HBPz}_{3}^{\prime}$ and $\mathrm{X}=\mathrm{N}$ for for HBTz_{3}

